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The interactions between longitudinal vortices and accompanying waves considered 
here are strongly nonlinear, in the sense that the mean-flow profile throughout the 
boundary layer is completely altered from its original undisturbed state. Nonlinear 
interactions between vortex flow and TollmienSchlichting waves are addressed first, 
and some analytical and computational properties are described. These include the 
possibility in the spatial-development case of a finite-distance break-up, inducing a 
singularity in the displacement thickness. Second, vortex/Rayleigh-wave nonlinear 
interactions are considered for the compressible boundary layer, along with certain 
special cases of interest and some possible solution properties. Both types, 
vortex/Tollmien-Schlichting and vortex/Rayleigh, are short-scale/long-scale 
interactions and they have potential applications to many flows at high Reynolds 
numbers. Their strongly nonlinear nature is believed to make them very relevant to 
fully fledged transition to turbulence. 

1. Introduction 
The majority of any transition process from laminar to turbulent flow poses a 

considerable theoretical challenge since fully fledged transition is a strongly nonlinear 
process, i.e. it completely alters the mean-flow profile from its original laminar state. 
Much interest has therefore arisen recently in nonlinear three-dimensional inter- 
actions between longitudinal vortices and accompanying nonlinear waves, because 
of the strongly nonlinear nature of vortex/wave interactions and hence their 
likelihood of increased relevance to fully fledged transition, e.g. as observed 
experimentally by Klebanoff, Tidstrom & Sargent (1962), Hama & Nutant (1963), 
Nishioka, Asai & Iida (1981), Nishioka & Asai (1984, 1985), Kachanov & Levchenko 
(1984), Williams, Fasel & Hama (1984), Williams (1987), Thomas (1987) and 
simulated computationally by Wray & Hussaini (1984), Kleiser & Schumann (1984), 
Gilbert & Kleiser (1986, 1988), Zang & Hussaini (1986, 1987), Fasel, Rist & 
Konzelmann (1987), Spalart & Yang (1987), Laurien & Kleiser (1989), Zang & Krist 
(1989). In this work vortex/wave interactions are considered theoretically in the 
context of boundary-layer transition. 

In the case of flat-surface boundary layers, there appear to be three main theories 
developed so far, of a truly nonlinear as well as rational nature : first, for nonlinear 
TollmienSchlichting (TS) interactions via triple-deck-like theory (e.g. Smith 1979a, 
1986, 1988, 1991; Hall & Smith 1984; Duck 1985; Hoyle, Smith & Walker 1991); 
second, for nonlinear Euler interactions (Smith & Burggraf 1985; Smith & Stewart 
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1987 ; Smith, Doorly & Rothmayer 1990) ; and, third, for nonlinear vortex/wave 
interactions (Hall & Smith 1988, 1989, 1990; Bennett, Hall & Smith 1991 ; Smith & 
Walton 1989; Bassom & Hall 1990). The third, which is our concern here, can be 
regarded as stemming from the first, as Smith & Walton (1989) show. Alternatively, 
in the presence of curvature, longitudinal vortices are able to exist without any 
forcing from a wave system (Hall 1982; Hall & Lakin 1988; Hall & Seddougui 1989). 
Here it is found that strongly nonlinear vortex flows completely restructure the 
boundary layer in a manner which renders it neutrally stable to streamwise vortices ; 
the latter result is closely related to the ideas of Malkus (1956) who proposed a 
‘marginal theory of turbulence. ’ All the above theories, for high Reynolds numbers, 
are known to be interconnected in that triple-deck interactions can lead on to Euler- 
stage flow (see Smith & Burggraf) and to vortexlwave interactions (see Hall & Smith 
1988; and Smith & Walton 1989), and further likely connections are found to arise 
in this study. All are particularly attractive because they can produce substantial 
alterations of the mean-flow profile or shear in the boundary layer, in contrast to  
linear instability theory and weakly nonlinear theory (e.g. Stuart 1960 - Watson 
1960 -like, Benney & Lin 1960, resonant triads (Craik 1971 ; Smith & Stewart 1987), 
critical-laycr analyses, and associated near-lincar-neutral analyses) where some 
interesting low-amplitude phenomena can be predicted but nevertheless the mean- 
flow quantities are little changed. Again, the truly nonlinear interactions above are 
based on rational arguments as distinct from the interesting but ad hoc approaches 
of certain other theories, while the largeness of the Reynolds number taken 
throughout seems not unlikely to be appropriate to the experimental range of 
greatest concern. The question of which strongly nonlinear interaction applies in any 
particular experimental configuration depends on the amplitudes and spectra of the 
input, a t  an initial time and/or position. In  particular, the present vortex/wave 
interactions apply for waves of small amplitude which nevertheless are able to alter 
the mean-flow quantities because of the relatively short wavelength, compared with 
the relatively large development length of the mean flow, thus inducing full 
nonlinearity. 

The aim in this work is to describe distinct cases of vortex/wave interaction in 
boundary-layer flows, as well as some interesting and useful sub-cases, of which there 
are many. We summarize the derivations from underlying flow structures and the 
governing equations, for a number of vortex/wave interactions, to focus attention on 
the wide range of possibilities and applications, and some solution properties are also 
given in the form of linear, secondary instability, weakly nonlinear, fully nonlinear 
similarity-type, and nonlinear breakdown phenomena, along with computational 
studies, as a start. A main task here however is felt to be to put the typical 
controlling equations of strongly nonlinear vortex/wave interaction on record, as 
they are believed to be of much significance and of broad application (see below). 

The scales and amplitudes of the vortex flows tend to be relatively simple on the 
whole and can be inferred from the early Taylor-vortex calculations by Davey 
(1962), say, whereas the waves’ scales and amplitudes are usually more involved. The 
origins of these scales and of the corresponding flow structures are to  be found in the 
flow properties described by Hall & Smith (1984, 1988, 1989, 1990), Bennett et al. 
(1991), Smith & Walton (1989), for lower-amplitude interactions, and there is 
possible overlap with the work done independently by Benney & Chow (1989 and see 
references therein), granted certain questions on rationality. The two major kinds of 
nonlinear vortex/wave interaction that emerge, and are addressed below, concern 
what are effectively TS waves and Rayleigh wavcs. 
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FIGURE 1.  (a) Typical strongly nonlinear vortex/wave interactions in a boundary layer. The scales 
of the slowly varying vortices are shown for square vortices aa in (2.6), (2.9), (4.1); the travelling 
waves present are either TS waves ($$2, 3) or Rayleigh waves ($8 4,5). Other scales possible are 
described in $2, spefifically those of ‘wide’ and ‘small’ vortices in (2.1) and (2.12) respectively. (b) 
Cross-section O(Re-i x Re-i) in the vortex/Rayleigh-wave case of 954, 5, including the critical-layer 
(O(Re-1) thick) effect at $? =f. 

Vortex/TS-wave interactions are discussed in $2 (see also figure l),  where the 
scales, flow structure and controlling equations are presented, and in $3 where certain 
solution properties are considered. This is mainly for the incompressible boundary 
layer although the corresponding compressible version follows the same pattern, cf. 
Smith (1989), Blackaby (1991), Smith & Walton (1989). Vortex/Rayleigh-wave 
interactions (again see figure 1)  are then described in $94 and 5 for compressible 
boundary layers, given the earlier groundwork, and given the susceptibility of such 
boundary layers to Rayleigh waves, with the incompressible and other limiting 
regimes then being obtainable as special cases (see $5 and Appendix C). A number of 
interesting nonlinear flow properties seem to be suggested. These include the 
possibilities that the vortex/TS interaction can provide a lead into vortex/Rayleigh 
interaction, even in the incompressible regime, that either interaction can produce 
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eventually an Euler-stage flow, within a finite distance in the spatial problem or 
within a finite time for the temporal case (these distances and times being measured 
in the relatively slower-scale variables), that many waves can be activated together, 
and that successive shorter-scale vortex/wave interactions can be provoked, 
producing a cascade of scales. In  addition, as the whole boundary layer is changed 
substantially in any of these nonlinear interactions, there is potential relevance to  
by-pass transition throughout as well as to more gradual transitions triggered 
initially by linear disturbances. Further comments are presented in $6. 

The nonlinear vortex/wave interactions studied here also hold for many other 
flows in principle and have numerous applications. Examples are channel flows (see 
also Bassom & Hall 1990; Bennett et al. 1991), pipe flows (see also Walton 1991), 
wakes, plane Couette flow, water motions, e.g. Langmuir circulations, free shear 
layers, separations, flow over surface roughnesses, vortex breakdown, and possibly 
other rotating fluid flows. The vortex-wave interaction seems to apply in fact to any 
flow that admits relatively short-scale waves. Among the interactions, those of $4 
for nonlinear Rayleigh-like waves would appear to have the broadest application. 

In  the following, the large Reynolds number Re is the global one, based on the 
airfoil chord and free-stream speed in the aerodynamic context, as are the 
corresponding non-dimensional coordinates x ,  y, z and velocities u, v,  w, streamwise, 
normal and spanwise respectively for flat-surface flow, and the time t .  Similarly, the 
non-dimensional density, viscosity, temperature and pressure are p,  y ,  T, p (with free- 
stream value p a ) ,  while M , ,  cr, C denote in turn the free-stream Mach number, the 
Prandtl number, and the constant in the Chapman viscosity law which is assumed 
for definiteness. The characteristic boundary-layer thickness is then O(Re-3) in terms 
of y( = Re-:@, and the standard TS scalings (Smith 1979a and subsequent 
references as above), i.e. three-dimensional triple-deck with y for instance scaled as 
9,  t ,  powers of Re-' and x ,  z as Q powers, apply in the setting of 9 2, whereas standard 
Rayleigh scales of powers in x , y , z  apply for $4. Throughout, the motions being 
considered are three-dimensional and unsteady. 

2. Nonlinear vortex/Tollmien-Schlichting interactions 
The vortex/TS nonlinear interactions that we address first here are larger-scale 

ones, in which the mean-flow profile of the entire O(Re-$ boundary layer is altered 
from its original laminar form. We start with the wide vortex. The scales involved 
may be derived from an order-of-magnitude reasoning as follows. The small TS 
waves of typical pressure amplitude If say, to  be determined, have the triple-deck 
structure, so that their streamwise and spanwise velocity perturbations are of order 
Re-th within the lower deck near the surface, where n = Re-fh and h is assumed to 
be small. The powers of the Reynolds number present here are those characteristic 
of the triple-deck, and hence of two- and three-dimensional TS waves, as set out in 
numerous previous works on TS waves alone : see references in the second paragraph 
of $ 1 and Appendix A. In particular the z-scale is comparable with Re-;. Forcing of 
the near-surface vortex flow then occurs a t  the amplitude-squared level, including a 
vortex spanwise velocity of order Re-ih2, due to an expansion proceeding in powers 
of h. This velocity grows logarithmically at the edge of the lower-deck sublayer, as 
described by Hall & Smith (1989), and so i t  is little different in the main part of the 
boundary layer, the main deck. There the typical vortex dynamics is controlled by 
the convective-viscous balance acting on the O( 1) scale in x and hence, by continuity, 
since the z-scale is of order Re-:, the representative w in the vortex has size O(Re-e), 
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given that the streamwise velocity is of order unity. So nonlinear interaction arises 
when this size of spanwise velocity is com arable with that forced by the presence 
of the TS waves, i.e. with the order Re-sh2 (times QlnRe in view of the $power 
difference between the lower- and main-deck scalings), from above. The critical size 
is therefore h - Re-6 (times S? = (QlnRe)-a), corresponding to the pressure amplitude 
n = Re-! [times 91 and confirming the relative smallness of the TS waves, which 
contrasts with their substantial impact on the main boundary-layer motion. The 
same estimate of size results from direct extensions of our previous work on related 
vortex/wave interactions (see references). The back effect of the induced longitudinal 
vortex motion on the waves themselves is felt through the streamwise skin friction 
which helps to control the waves' response within the sublayer. 

The expansions of the flow solutions in the lower, main, and upper decks may then 
be set down, accounting for the extra logarithmic terms necessary in view of the 
logarithmic sublayer behaviour of the vortex spanwise velocity mentioned above. 
The unknown vortex or mean-flow velocity has the form 

[u, w, w] = [a, Re-iv, Re-;m]+ ... ( 2 . 1 ~ )  

across the majority of the boundary layer, while the wave velocity and pressure are 

Re-! 5?fj1, (2.1 b)  I Ref 5?Pl, (2.ld) 

[u, v, w] = O[Re-a, Re-!, Red] 9, p = Re-;S?Pl, 

in the upper, main, and lower decks respectively. Here the variables in ( 2 . 1 ~ )  are 
independent of the fast scales X, f, whereas those in (2.1 b 4 )  depend on X, f, where 
x = Re-gX, t = Redf and the multiple scaling 

P 

(2.14 1 O[Re-a, Re-*, Re-a] S?, 

O[Re-t 91, 9 = (i In Re)-$, 

aX+&a,+ax, at+Rdat+at 

operates. Also, the wave pressure PI is independent of y, and the main timescale of 
the wave is O(Red), corresponding to a non-dimensional frequency of O(Re4). See 
figure 1. More details on the nature of the expansions are in Appendix A. The 
resulting governing equations for the vortex/wave interaction in this context are 
therefore : 

vortex 
ax+v.g+m, = 0, ( 2 . 2 ~ )  

(2.2b) at + a ax + Fav + m a, = - p'( x) + tigv 

mt+amz+vm,+aaz = o+m,,, (2.24 
subject to 

a = B = 0, i~ = - P a ,  (IP12+ a-21Pz12) a t  y = 0, (2.2d) 

tZ+u,(z), m+O as y + m ;  (2.2e) 

wave 

with 

Pzz - 9 (h,/h) Pz - a2P = %A, 

h = a ,  a t  y = O .  
- 

(2.311,) 

(2.3b) 

Here the scaled vortex velocity (a, B, 8) and skin friction 2, and the wave pressure P 
and displacement -A ,  are all unknown, as is the (real) wavenumber a(x) if the 
spatial development is under consideration, and PI = PE+c.c. with E = 
exp (iaX- iQf) (see next paragraph). Also, ~'(x) = -u, uL(x) is the prescribed external 
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pressure gradient, if any, and the spanwise scale has z = RedZ.  The wave pressure- 
displacement (P-A) law required to complete the system is given by solving 

with 

(a;+a+q)p = 0, 

@ + O  in the far field, 

( 2 . 4 ~ )  

(2.4b) 

p+P,  ji9+-u2uEA as g + O + ,  ( 2 . 4 ~ )  

for the upper-deck response in the potential flow just outside the boundary layer, in 
the present incompressible regime. The coefficients appearing in ( 2 . 3 ~ )  are defined by 

(2.5 c d )  

where Ai is the Airy function and, for the spatial case again, 52 (rcal) is the constant, 
imposed, scaled frequency. We should emphasize that both the wavenumber a and 
the frequency 52 are to remain real throughout, i.e. the mean flow has to adjust to 
keep the wave part in neutral. Growing modes, in contrast, would tend to lead into 
a pure TS nonlinear stage as referred to in $ 1  (yielding in particular the nonlinear 
break-up of Smith (1988), as in Hoyle, Smith & Walker (1991), Pcridier, Smith & 
Walker (1991), and see later) ; while, again, our earlier work (e.g. Hall & Smith 1988) 
on vortex/wave interactions indicates examples where such mode growth is 
suppressed nonlinearly in favour of vortex/wave interaction of the present kind. In  
the work of Benney & Chow it is not clear that the wave system driving the mean 
flow can ever be neutral. 

The wave-forcing of the vortex motion appears in the effective spanwise surface 
velocity in (2.2d), an amplitude-squared effect anticipated in the first paragraph of 
this section. The vortex forcing of the wave, on the other hand, is through the skin- 
friction factor x in the TS pressure equation ( 2 . 3 ~ ) .  I n  the pure spatial-development 
problem the terms at, at in (2 .2b ,  c )  are to be omitted, and, in the background, the 
short-scale wave is dependent on X through the form P(x,  2) E + C.C. in effect while 
the long-scale vortex flow is independent of X (more formally, i d  should be replaced 
by i s  a dxRet). The main alternative of pure temporal development has a, identically 
zero instead in (2.2u-c), along with the multi-scaling above where the fast-scale wave 
varies with f a s  above, i.e. we have P(t, Z)E+c.c. in effect, but the slow-scale vortex 
evolution is independent of f, and a is then constant with a(t) to be determined. 

The wide-vortex/TS interaction, then, is governed by (2.2)-(2.4). 
The next two types of vortex/wave nonlinear interaction addressed are for the 

square vortex, for which the y- and z-scales of the vortex are comparable, of order Re-;. 
These types have scales implied to  some extent by Bennett & Hall (1987) and by an 
examination of the wide-vortex case above for condensed IzI scales. First, the slowly 
varying square vortex has the form 

[u,v,w] = [ @ , R e d ~ , R e - f ~ ] ,  p =p(x)+Re-’p2+ ... ( 2 . 6 ~ )  

with z = Redcand zof O( l),  and the fast-varying wave disturbance is now condensed 
inside the boundary layer, such that its velocity and pressure fields have 

(2.6b) 

( 2 . 6 ~ )  
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in the midst of the boundary layer and in the O(Re-i) sublayer, in turn. Also, 
a, + Re; a, + a,. So here the vortex equations are 

a,+Bg+w, = 0, ( 2 . 7 ~ )  

(2 .7b)  

( 2 . 7 ~ )  

wt -I- a wz + B w g  i- w we = -pzz+ ,agg + ,azf. (2 .7d)  

These are the nonlinear Gortler-vortex equations in a boundary layer at zero Gortler 
number (Hall 1988) ; in the presence of curvature a term proportional to a2 must be 
inserted in ( 2 . 7 ~ ) .  The boundary conditions appropriate to ( 2 . 7 ~ 4 )  are 

a = v = O ,  .iii=-h-2a,[IP12+a-21P~I] at g = O ,  (2 .7e)  

at +@a, + @7ag + w a, = -p ' (x)  + ugg + azz, 
vt + av, + + w vz = -p,,+ B- YY -+u,,, 

- 

a + u , ( x )  as g + w ,  ( 2 . 7 f )  

while the coupled wave-pressure equation is 

Pzz-9(X,/h) Pz-a2P = 0. 

Here x is  the unknown skin friction as defined in (2 .3b)  and 9 is as in ( 2 . 5 a ) ,  but now 
the interaction relation of (2.4) is replaced by A + 0 effectively. This new feature is 
due to the shortened streamwise and spanwise lengthscales associated with the wave, 
both of which are now O(Re-i), thus suppressing the inviscid pressure feedback from 
outside the boundary layer. The timescale of the wave is now O(Re-)), i.e. the 
frequency is O(Rei),  larger than before. The other new features of the present two-tier 
structure, for the square-vortex case, are the balance of normal and spanwise 
diffusion, in (2.7 b d ) ,  and the interpretation of (2.7 c, d )  as a streamwise vorticity 
equation (on elimination of p ,  by cross-differentiation). It should be noted however 
that (2 .8)  has no solutions with a real if h, = 0, and even with h, + 0 the possibility 
exists that there are no solutions of the full interactive equations in this case. 

The other type of nonlinear interaction involving a square vortex has some 
analogies with that of Bennett et al. (1991) for channel flow. Here the vortex exhibits 
scales as in ( 2 . 6 ~ )  again, but the wave form is distinct from (2 .6b,  c )  in that the triple- 
deck structure is reinstated, such that 

[u, w, w, p ]  = O(Re-i) 5?'+ O(Re-5) 9 ( 2 . 9 ~ )  

in the upper deck, and so on: in particular 

p = (Re-gPo+ ...+ Re-%Pl)2?+ ... (2 .9b)  

in the main and lower decks, and similarly in the upper deck, with Po(x) uniform in 
z but PI depends on x ,  5. The relative contributions of order Re-: in the wave form 
affect both the vortex and the TS response throughout. Thus the vortex equations 
are again ( 2 . 7 ~ - f )  except that the spanwise slip condition in (2 .7e)  is replaced by 

w = - X-%, [Po P: + P,* PI + a-2~Plz~z] at  y = 0, (2.10) 

and the wave-pressure equation becomes now 

Plzz-9(X,/X)Ple-a2Po = %Ao, (2.11) 

where A ,  = a-'P0. Here again the y- and z-diffusion effects in the vortex motion are 
comparable, but the increase in the skin-friction variation across the span, relative 
to the wide-vortex case, causes the splitting of the TS wave response as in (2 .9b) .  The 
solution of (2.11) for Pl can be written in integral form as in Bennett et al. and 
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substituted into the slip condition (2.10) in principle. Other scales and forms of 
splitting are also possible for this square-vortex type. 

We move on now to the fourth type of nonlinear interaction to  be considered, that 
for a small vortex. This arises as an interesting sub-case of the interaction (2.2)-(2.4), 
with the characteristic g-scale reduced to O ( A )  say, near the surface, where the new 
parameter A 6 1. So we might expect that  a - A ,  in an O ( A )  sublayer, with the x- 
scale reduced to the order A3 to preserve the convective-viscous balance in (2.2). 
Hence by continuity B is large, O(Apl), and i8 is still larger, O ( A - 2 ) ,  provided the Z -  
scale remains intact. The nonlinear interplay between the vortex and the wave also 
stays intact if the scaled wave pressure P is increased by an amount A - l ,  from (2.3), 
with a remaining O(1). So here the vortex quantities are 

(2.12 a )  [u, v ,  w] = O[A,  Re-4 A - l ,  Re-: A - 2 ]  with y - A ,  z - A 3 ,  

and the TS wave pressure is increased to  

p = O(Re-$A- l ) ,  (2.12b) 

to within a logarithmic factor. The governing equations for this case, in scaled form, 
are (2.2) with p’(z )  absent and with (2.2e) replaced by 

Gg+A, as y+m, (2.13) 

in effect, coupled with (2.3), (2.4) again. Here the constant A, is the skin-friction 
factor for the undisturbed incident boundary layer. As A tends back towards O( 1) the 
wide-vortex case of (2.2)-(2.4) is approached, whereas for A reduced towards O(Re- i )  
the small-scale interaction of Smith & Walton (1989) is recovered. A number of other 
small-vortex/wave nonlinear interactions can be derived in similar vein from the 
previous ones. 

All the vortex/wave interactions described above are fully nonlinear in the sense 
defined in $1. In general each one needs a computational treatment, marching 
forward in x from given starting conditions at x = 0, say, in the spatial-development 
setting, or forward in t from initial conditions a t  t = 0 for the temporal setting. Note 
however that for either the temporal or spatial problem we cannot arbitrarily choose 
the input vortex velocity field since the associated Tollmien-Schlichting wave must 
satisfy an eigenrelation dependent on the initial shear stress. Some solution 
properties are presented below. 

3. Nonlinear interaction properties 
Most of our interest here is in the spatial development for the wide vortex of 

(2.2)-(2.4) and for its small-vortex form (2.13). The nonlinear flow properties of the 
vortex/wave interactions seem to depend to a large extent on the amplitude and 
spectra of the input disturbance upstream. 

Certain special cases may be addressed first, as guidelines. Thus if the input 
comprises two oblique waves of relatively low amplitude and spanwise wavenumbers 
kp say, then an analysis for (2.13) for instance can be conducted similarly to, 
although with some differences from, the analysis in Hall & Smith (1989), when the 
latter is corrected for a logarithmic effect, like that in (2.1b), as described by 
Blennerhassett & Smith (1991). Such analysis yields interaction equations between 
the near-neutral waves’ amplitudes and the induced vortex motion. The solutions of 
these weakly nonlinear equations in the Hall & Smith (1989) case show that, 
depending on p, either a finite-distance singularity is encountered or a far- 
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downstream asymptote with exponential growth is attained. In the present context, 
the former would tend to reinstate the full vortex/wave system associated with 
(2.13), whereas the latter would lead on eventually to the longer-scale vortex/wave 
interaction of (2.2)-(2.4). Similarly, if the input wave is near-planar then analysis 
along the lines of Smith & Walton (1989) can be applied initially. For relatively small 
amplitudes, the solution properties found with weak nonlinearity present again tend 
to reactivate (2.2)-(2.4) or (2.13) in full. For non-small amplitudes, pronounced 
secondary instability to three-dimensional modes is found, among other things, with 
the near-planar input, the three-dimensional components growing initially in a form 
analogous to the exponential of an exponential of distance. 

The above cases could be used to provide upstream starting conditions for the full 
vortex/wave-interaction systems (2.2)-(2.4), (2.13), e.g. at finite or large negative z 
respectively. The ultimate downstream behaviour on the other hand for the small- 
vortex case is considered in Smith & Walton (1989), where three main possibilities 
are raised. One is that the full interaction continues to downstream infinity and 
acquires a nonlinear similarity form (with the scaled a, P, 8, m behaving as scaled xi, 
x-i, xi, x-3 in turn), properties of which are given in Smith & Walton (1989) and by 
Walton (1991). In that event, the small-vortex/wave interaction acts as a precursor 
to the wide-vortex form. The second possibility concerns a three-dimensional strong- 
attachment singularity occurring in the vortex and wave solutions at finite x 
downstream. This typically takes the form, with n > $, 

g N (XA -x)5j, B - (XA-x)-n, w - (xA-x)-2n, ( 3 . 1 ~ )  

on approach to a surface attachment line x = z A ( Z )  - , say. Here a is typically O(1). 
Near a valley plane 2 = 2, for instance, where - (2 -2,) Zi, (5) vanishes, the cross- 
stream balances 

dominate, yielding the solutions 

jq+Zi, = 0, v&=+Zi,Z = &= Y Y  

- 
B =  r[exp(-@)-i], Zi, = r'exp(--yy), (3.lb) 

where 7 is a positive constant. Hence the wave-pressure amplitude P is proportional 
to (xA-x)-" and also becomes singular at x = xA. The 'strong attachment' here is 
associated with the decreasing y-scale in (3.la).  The third possibility in Smith & 
Walton is again a finite-distance singularity but of a three-dimensional separation 
kind, taking place in the vortex motion, probably at a peak plane 2 = 2, say. (The 
'separation' is due to the increasing g-scale in ( 3 . 2 ~ )  below). There 

y- (X,-X)-NY, a - (X,-X)QU, (3.2a, b) 
v- (x,-x)-~, m - (X,-X)Q-'(Z-Z,), (3.2c, d) 

with N = r+ q - 1 positive and q > 1 - 2r ,  so that the local response is predominantly 
inviscid in a region which thickens in singular fashion as x + xB - .The solution has 
the form 

dU/dY = A, Uml + A ,  U m z ,  m1 = 1 +N/q, m2 = m,- l / q ,  (3.2e) 

where A,,  A ,  are constants. For example, if r = i, q = I ,  then N = i and U takes a 
(tan)2 form; indeed, further work by F. T. Smith and A. G. Walton (see also Walton 
1991) points to this example as being the general case for the separation singularity. 
The description (3.2a-e) holds for a finite range of Y, with U becoming singular a t  
Y = Y, say in such a way that a thinner region of extent O ( l ) ,  in terms of 
~ - ( x , - z ) - ~ Y , ,  is induced to smooth out the velocity profiles. In this O(1) region, 
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the velocities a, m are O( 1) and their profiles are arbitrary, i.e. dependent on the flow 
history, apart from the matching with (3.2e) a t  the lower extremes and (2.13) for 
example in the upper extremes. In  particular the effective boundary-layer 
displacement 

6* - (xe-x)-N 
becomes large in this separation singularity, including the favoured case N = g. This 
increase in the normal scale is connected perhaps with the formation of a lambda 
(loop) or hairpin vortex in practice, as Smith & Walton indicate, a connection which 
is further supported by the nearly separated or reversed form of the velocity profiles 
involved : see the reference above. 

The proposed attachment singularity (3.1) and separation one (3.2) apply equally 
well to the wide-vortex case in principle. The similarity form mentioned previously 
does not apply, however, and appears at first sight to  be replaced by the far- 
downstream behaviour 

P - Pox-t+Plx-:+ ..., a - aox-f, (3.3~4 b) 

suggested by (2.2)-(2.4), a t  least if the 2-scale stays fixed at 0(1), as might occur with 
Z-periodicity present. Here Po is independent of 2, and the splitting in (3.3~) and the 
rest of the solution structure bear some resemblance to the square-vortex form in 
(2.9)-(2.11), although now Ito[ is large ( -  xi), so that relatively high-frequency 
features apply. Conversely, a low-frequency input with SZ 4 1 would produce the 
form in (3.3), downstream, with x replaced by 52+ in effect. Further investigation 
however suggests that there are no high-frequency solutions with ltol large, e.g. from 
analysis of (2.3~) with (2.5~4). Instead, the flow solution seems more likely to 
terminate with a finite-distance singularity, as in (3.1); (3.2) or with the wavc- 
pressure amplitude tending to zero in a square-root fashion, in view of (2.24, similar 
to a special case given in Smith & Walton (1989). Other possibilities for the wide- 
vortex and small-vortex nonlinear interactions with TS waves may exist of course, 
and likewise for the square-vortex forms in $2. 

Computational studies have been made of both the wide- and the small- 
vortex/wave interactions of (2.2)-(2.4) and (2.13) respectively. Spectral treatments 
for the Z-variation have been applied to each case, and a finite-difference Z -  
representation has also been applied to the small-vortex case. These studies are being 
continued. Here we report on some preliminary but significant results obtained in our 
numerical investigation of the wide-vortex/wave interaction problem. This was done 
using a mixed finite-difference/spectral approximation to the vortex/wave equations 
(2.2) - (2.4). Thus, for example, a is written as 

N 1, v.v 2-f, m N x-1, N x-f, (3.3c-f) 

m 

= ao(x, g) + C an(x, 8) cos npZ, (3.4) 

and the x, g-dependencies of Un are then approximated using finite differences. All of 
our calculations were for the zero-pressure-gradient case, pf = 0, but the scheme as 
described could be carried out for pressure-gradient-driven boundary layers. 

Suppose then that a, aand i i j  together with P and A ,  and a, 52, are known a t  x = E ;  
we now describe a scheme which can be used to advance the solution to x = Z+E 
in such a way that the wave frequency SZ is held fixed. Thus we are assuming that 
as the wave evolves its frequency stays constant whilst its wavelength and amplitude 
vary. 

In  order to  step the solution forward, we decouple the vortex and wave equations 

1 
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by making w a t  x = Z+i?satisfy the required boundary condition at  g = 0 evaluated 
in terms of P known at  x = Z. The x- and z-momentum equations for the combined 
mean flow-vortex field can then be stepped forward using essentially the scheme 
used by Hall (1988) in an investigation of fully nonlinear Gortler vortices. The reader 
is referred to that paper for precise details of that scheme. It suffices here to  say that 
g-derivatives are approximated using central differences and the nonlinear terms 
involving any harmonic content of a, v and w are iterated upon until a converged 
solution is found. 

The above procedure is used to advance the vortex vclocity field to  x = Z+ and 
the corresponding shear stress a t  that point can then be found from a. The 
eigenrelation specified by (2 .3a)  and (2 .4a-c)  will, for fixed frequency, determine a 
complex value for the streamwise wavenumber a. However, it is implicit in our 
analysis that  the wavenumber a is real, so that the eigenrelation a t  x = z + E  in 
general does not have an acceptable solution. At this stage there are two simple 
procedures which can be used to  remedy the situation. Firstly, the value of m(g = 0) 
at  x = Z+ B can be iterated upon in order to make a calculated a t  Z + B  purely real. 
In effect this is most easily done by iterating upon some measure of the 
Tollmien-Schlichting wave amplitude a t  x = Z+ c. Alternatively, we proceed by 
writing (2 .3a)  in the form 

where - and + denote quantities evaluated a t  Z and Z+Frespectively. The right- 
hand side of (3 .5)  is then known, so that after expanding P in a Fourier series (3 .5)  
can be solved for P at z + B .  We note that this can be done for any value of a but a 
constraint on the wavenumber can in effect be found by further consideration of 
(2 .3) .  Since that equation is linear we can at  each step multiply the solution by a 
factor eiX(5) with x to be found at higher order. Thus (2 .3)  must be solved with some 
condition imposed on its phase at  a given value of 2. Without loss of generality we 
can make P real a t  Z = 0. The value of a used to  determine P above is then iterated 
upon in order to make (say) (P)i = 0 a t  2 = 0. I n  this procedure the Tollmien- 
Schlichting frequency is of course fixed and a value for a a t  z+E is obtained. 

The calculations which we report on have been carried out using the second of the 
procedures described above in order to keep a real. The input used to begin our 
calculations was found in the following way. Firstly, we assume some form for a a t  
an initial value x = x* and then solve the eigenvalue problem determined by ( 2 . 3 a ) ,  
(2.4a-c) for the appropriate real values of a and SZ. The values of a and SZ calculated 
in this way depend on a through the wall shear h, so that for example an almost two- 
dimensional input Tollmien-Schlichting wave can be constructed by choosing iin in 
(3 .4)  for n 3 1 to be small compared with a,,. Having solved for the Tollmien- 
Schlichting eigenrelation at x = x* the boundary condition to be satisfied by m then 
can be determined in terms of P. The initial profile for w at x = x* is then chosen 
to be consistent with this condition. In  the calculations reported here /3 = 0.02, 
x* = 55, and eight Fourier modes were retained in the Fourier expansion of the 
vortex and Tollmien-Schlichting fields. Note here that the local wavenumber a t  a 
given x is proportional to xi so that the chosen value of /3 is not in effect small. The 
initial distribution for ti was taken to  be 

(3 .6a)  
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where uB is the Blasius profile, u$ = e-Q-epzV and A ,  is parameter which can be 
varied so as to alter the size of the incoming vortex. The spanwise velocity  ti^ was then 
taken to be 

m 

rn = xn w,*(y) sin npz, 
1 

(3 .66)  
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FIGURE 2. The development of (a) el, e2, es, e, ,  ( b )  Po, P,, P2, Pa, Pa, and (c) a with 2, for the case 
A ,  = 0.02, P o + c p  P, = 1 at x = 55. 

with wz = cos ge-g and xn chosen so that t~ satisfies the boundary condition on t~ a t  
q = 0 determined in terms of the TollmienSchlichting pressure. Clearly the above 
initial conditions are rather arbitrary but this is always the case with longitudinal 
vortex calculations unless the receptivity problem is discussed ; see Hall (1983, 1989). 
Some limited experimentation with other initial conditions produced qualitatively 
similar results but we do not claim to have made an exhaustive investigation of the 
effects of the initial conditions on the vortex/wave interactions. 

In  order to monitor the evolution of the vortex and the wave, the following 
quantities were calculated as the flow was allowed to develop: 

e,=/:(ai+wi)dg, n =  1,2, ... 

m 

and Pn, where P = Po + C P,, cos nPZ. 
1 

(3.7a) 

(3.7b) 

In figure 2 we show results from a calculation where the initial wave is almost two- 
dimensional. Figures 2(a ) ,  ( b )  show the development of e l ,  e2,  e3,  e4 and Po, P,, ..., P4 
respectively. Figure 2 (c) shows the corresponding development of a. The calculations 
were started from x = 55 with Po + xr P,, = 1 and A ,  = 0.02. We see that the wave 
becomes progressively more three-dimensional as it moves downstream and that a t  a 
finite value x a singularity appears to arise, beyond which the solution cannot be 
calculated. The apparent singularity occurred in the same place when the finite- 
difference resolution was increased or the spectral resolution decreased. It was not 
possible for us to perform the calculations with more than eight Fourier modes 
because of our limited computing resources. However, we believe that figure 2 
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FIGURE 3. The development of ( a )  e , ,  e2 and ( b )  Po, PI.  P2 with r for the case 
A ,  = 0.02, P o + c p  P, = 0.2 at x = 55. 
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represents a significant calculation because i t  demonstrates the three-dimensional 
secondary instability, then nonlinearity and ultimate breakdown, of an initially two- 
dimensional wave and the induced vorticity structure. The resolution of the 
calculations was not great enough to determine whether the singularity encountered 
numerically is related to the ones discussed earlier in this section. 

In  figure 3 we show the results of a similar calculation but with smaller initial 
strengths for the vortex and wave fields. Here the vortex and waves decay as x 
increases. We note that the wave appears to effectively disappear before the vortex 
field. This is consistent with there being a subcritical bifurcation of a three- 
dimensional wave from a longitudinal vortex velocity field a t  a finite value of x (see 
our earlier comment concerning a square-root wave-pressure behaviour). 

4. Nonlinear vortex/Rayleigh-wave interactions 
Nonlinear interactions between longitudinal vortex flow and inviscid Rayleign 

waves are considered here for the compressible or incompressible boundary layer, 
with, as a result, the boundary layer's O(1) mean-flow profile again being changed 
completely from its original form. 

The scales involved may be deduced mostly from a first-principles argument. Thus 
if the induced Rayleigh wave has pressure amplitude ?i, its typical velocity 
amplitudes are also of order ?i, by its inviscid nature, and the representative 
wavelengths are all of the short-scale size Red. Hence the nonlinear inertial effect 
provoking a mean-flow correction is of order +Re;, e.g. from uu,, uv,, uw,. This is to 
be compared with the minimum inertial force in the typical long-scale vortex motion, 
namely Red, for a full 'square' vortex of size as in ( 2 . 6 ~ ) ;  this force is from the 
spanwise and normal momentum of the vortex, e.g. uv,, uw, (and the viscous forces 
such as Re-lwvv), rather than the strong streamwise momentum force of order unity. 
So the wave affects the mean flow at zeroth order if ?i2Rei is comparable with Red, 
i.e. if the wave pressure has amplitude iT - Re-i (smaller than in 92), in principle. 
There is a complication, however, similar to that in the vortex/TS case, namely the 
appearance of logarithmic behaviour in the induced vortex velocities close to the 
(linear) critical layer(s), situated a t  y =f say. The logarithmic response arises 
because the three-dimensional wave velocities there grow like (y-f)-' (see below), so 
that the nonlinear inertial spanwise forcing is proportional to (y- f )-', which can 
be balanced only by the viscous term wpg of the vortex with w proportional to 
In Ig-fl. Hence logarithmic contributions are drawn into play again, slightly 
altering the interactive balances. 

In  consequence the flow solution in the nonlinear vortex/compressible-Rayleigh- 
wave interaction (see also figure 1) has the underlying form 

[u, v, w, p ,  p, T ,  p] = [a, Re-ia, Re-; ZZ, ~ ( x )  -I- Re-lp,, p ,  T ,  p] 
+ Re-: [u(l), dl), w(l), p( l ) ,  p( l ) ,  P), p(l)]  =.Vl + . . . , (4.1) 

where the first square brackets on the right-hand side describe the mean flow or 
vortex motion, dependent only on.the slower streamwise variable (x), and the second 
the wave, dependent on the faster streamwise variable (X), while =.Vl = (Q1nRe)t is 
small. Along with this, multiple scaling of the form 

a, +.Red a, + a, 
holds, in the spatial case here, with x = RedX. Again, as in 92, the mean flow is to 
adjust to maintain the neutrality of the wave part here as distinct from growing 
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modes which would tend to produce nonlinearly an Euler stage as mentioned in $ 1  
(and see later). The expansion (4.1) applies across most of the boundary layer, with 
8 , ~ -  1,  and leads to  the compressible vortex equations 

(pa)$ + ( p q g +  ( p ? q Z  = 0, ( 4 . 2 ~ )  

~ ( u u ,  +sag +maz) = - p ' ( ~ ) / y M 2 ,  + (@ti,), +   ti^)^, (4.2 b) 

p(a Vz + "Vg + w vz) = - p,, + (p a& + (2p Qg + (p( w, + vZ)&, ( 4 . 2 ~ )  

p(aw$ + vwg + w wz) = -pzz+ (paz)$ + (p(wg + cZ))g + (2pm&, (4.2d) 

p(a Tx + uTg + m Tz) = (r-l {(p T,), + (p T&} + ( y  - 1 )  y - ' ~ p ' ( x )  + ( y  - 1 )  M2, p(ai + a:), 

with a = v = w = O  , T = T ,  at y=O, (4.2h) 

pT = gi, p = CT, ( 4 . k  f 

(4.2g) 

a+u,(x) ,  F+T,(x), p+p,(x), m+0 as p c o ;  (4%) 

and to  the compressible Rayleigh equation for the effective wave pressure @, 

2 -  - 
@,,+@zz--(M- M Yp, ,. +M,@Z)-~2(1-M2) f j  = 0 (4.3u) 

with $+O(or outgoing waves) as y +  co, @, = 0 at  y =  0. (4.3b, c )  

Here the wave has p( l )  = @exp ( i d -  iat") + c.c., with a, Q( = ac) real, the amplitude 
@ is independent of the faster scales X ,  t"= Reit, and similarly for dl), dl ) ,  etc., leading 
to the inviscid response in (4.3). Also, gi' = - yM", pe u, u: is the external pressure 
gradient, T,(x), p,(z) are the external temperature and density respectively, and 
p ,  = p,/yM2, - (p' - %) (ax + Vg + wz), although we have in mind here mainly the case 
of the uniform stream with p = 1. The nonlinear interaction occurs through the 
definition of M required for (4.3), 

M = ( ~ - c ) $ M , ,  (4 .44  

and through the boundary conditions on the vortex flow a t  the critical layer, 

(4.4b) 

at y = f(x, Z) (where a = c ) .  (4.44 

Here p is the cross-flow velocity tangential to the critical-layer curve y = f(x, z), so 

(4.4d) 
that 

q = A i w ,  v=fzm at g = f ,  

and A = 1 +E; see also the next-but-one paragraph. The contribution ( 4 . 4 ~ )  
describes the vortex-forcing of the wave, in essence, while the cross-flow slip velocity 
(4.4b) represents the main back-effect of the wave on the vortex motion, thus 
producing nonlinear interaction in which both the mean flow and the wave are 
unknown. 

The main details behind the slip condition (4.4b) are presented in Appendix B, 
given the behaviour in (4.5)-(4.8) below. 

The nonlinear vortex/Rayleigh-wave interaction is given by (4.2)-(4.4), for the 
compressible boundary layer. The pure spatial-development case is shown above, 
that for pure temporal development having aaX replaced by at, etc., and a fixed 
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surface temperature is assumed as an example. Some of the comments in $2 apply 
here as well, and further points about the flow structure are the following. First, the 
induced slip velocity in (4.4b) clearly has a connection with that for TS waves in $2 
corresponding to f = 0 and the high-frequency regime (see also 56). The tangential- 
flow condition on (v, @, incidentally, seems different from a usual vortex-sheet 
condition, since Cfz is absent. The present condition stems from the forcing terms on 
V, iO from Reynolds-stress-like contributions, denoted ( ) in Appendix B. We observe 
also, however, that the q-term concerns the wave-forcing effects only and is 
additional to other contributions to V,ZT which may come from the vortex 
evolution itself. Second, the relatively thin critical layer surrounding y = f is of the 
linear viscous kind, because the wave pressure amplitude n is only O ( R e - ~ Y , )  (see 
references), and the thickness is of order Re-;. From (4.3a), (4.4u), the wave response 
nearby as y+  f & is of the form 

@ - $o+s$1+s2@2+s3@3+. . . ,  (4.5a) 

where s = y-j, in general logarithmic terms must be absent to allow both a and c to 
remain real, and 

M -  &,+s2B2+ ..., (4.5b) 

with the coefficients above being z-dependent and related by 

$1 A = @ O Z f Z ~  ( 4 . 6 ~ )  

(4.6b) -2@, A - f Z Z @ ,  + M,,( f z @ ,  -@oz)/Ml +Pozz-a2@,, = 0, 
-2@2z fz-2@,( f E Z +  3AM2/Ml - M , z  fJB1) +@lzr+ 2(B2 f E - @ l Z ) @ l Z / B l  

+@,( -a2+MzZjz/Ml-Mz fZZ/B,)+[M2(@ozz-a2~o)-~2,@o~]/~l = 0.  ( 4 . 6 ~ )  

(In principle these give three equations fixing the three terms @o, @l,  $,). Hence it 
follows that the three-dimensional wave velocities are given locally by 

.iz -F- , s - l+Fo+ . . . ,  (4.7a) 

v" - G-, s-, +Go + . . ., 
6 - H-,s-'+H,+..., 

(4.7 b) 
(4.7c) 

as anticipated a t  the start of this section; in addition f j  - -pZ$oZ/(ya2i@ As2) .  Here 
the inviscid disturbance equations show that 

( 4 . 8 ~ )  

(4.86) 

( 4 . 8 ~ )  

consistent with (4.6u-c), where p -  po+pls+ ..., @ - c  - @,s+C2s2+  ... . See also 
Appendix C for the incompressible regime. The singular behaviour in ( 4 . 7 ~ ~ )  is 
responsible for the generation, at the amplitude-squared level, of the logarithmic- 
flow effect which leads to the effective slip in (4.4b), via the O(Re-f) critical layer (see 
Appendix B). Third, the three-dimensional-wave condition in (4.6 u-c) can be shown 
to agree with the generalized inflexion-point condition for two- or three-dimensional 
simple waves on a parallel flow (and with other simpler cases), from consistency 
between (4.6b, c), requiring M2 = 0 in general, and with @, = 0 from ( 4 . 6 ~ )  then. The 
latter waves can act as triggering mechanisms for the present nonlinear interaction. 
Fourth, the continuity properties of the total mean flow ti, V, IX across the critical 
layer are worth noting. These are that @ , d , f l , ~ , # , m  are all continuous, with 
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discontinuities appearing first in a"', v", i~' (the prime denotes the normal derivative), 
and requiring higher-order smoothing within the critical layer, which is addressed in 
Appendix B. Fifth, the wave's inertial effects on the mean flow are felt solely in the 
slip condition (4.4 b )  to leading order, the effects in the rest of the boundary layer 
being negligible (just !) owing to the logarithmic response described earlier. 

5. Special cases and limit solutions 
The vortex/compressible-Rayleigh-wave nonlinear interaction set up in $4 poses 

a computational task, in general, which scems a particularly severe one in view of the 
unknown moving boundary present (in (4.4)) and the coupled partial-differential 
systems (4.2), (4.3). No full solutions have been obtained yet, and appropriate 
computational treatments are only just being considered. For that reason we turn 
briefly here, in (i)-(vii) below, to  certain special or limiting properties, to help provide 
some possible guidelines and suggestions. 

and a, are identically zero in (4.2) and ti, B take 
on the compressible Blasius form, say, applies a t  small wave amplitudes 1fi1 and 
leaves the linear compressible-Rayleigh equation (4.3) controlling instability, w i t h B  
known in advance. Solution properties a t  various Mach numbers are given by Mack 
(1975, 1984) and Malik (1982, 1987) principally. The main result in the present 
context is that neutral modes exist a t  all Mach numbers (see e.g. Mack's 1984 figures) 
and so can act as triggers for the nonlinear interaction of $4. See also (iv) below. 

(ii) Weak nonlinearity can also be handled analytically in principle, an example 
being for two input oblique waves of lowish amplitudes. This is analogous to the Hall 
& Smith (1989) oblique-wave/vortex analysis in the TS case, and includes secondary 
three-dimensional instability at the start, as does the full system of $4. 

(iii) Wide-vortex/wave interactions similar to those in $2 can arise as limit cases 
of (4.2)-(4.4) for enlarged spanwise scales. 

(iv) Special ranges of the Mach number M ,  are of theoretical and practical 
interest, including zero M ,  (see also Appendix B),  small M,,  the transonic range 
M ,  + 1,  and the hypersonic range of large M,. These have connections, in turn, with 
the vast literature on linear incompressible Rayleigh modes in boundary layers, with 
Gajjar's (1989) linear and nonlinear critical-layer work, with Bowles' (1989) 1' inear 
and nonlinear instability work, and with recent studies of linear hypersonic-flow 
instabilities. Concerning the hypersonic range in particular, the undisturbed steady 
two-dimensional boundary layer with no imposed pressure gradient itself acquires a 
two-layered form at  large Mach numbers (Bush 1966; Lee & Cheng 1969; Stewartson 
1964), with a relatively wide high-temperature layer, wherein g is O(M2,), at the 
upper edge of which is a relatively thin high-vorticity layer with y-M2, F ( z )  of order 
(Ink!;);. Here g = W,F(x) denotes the scaled boundary-layer displacement. In  line 
with this, the linear instability modes split into two types, the so-called vorticity 
mode concentrated within the high-vorticity layer and having the maximum growth 
rate (Brown & Smith 1990), and the so-called acoustic modes which spread normally 
across the O(M2,) layer and have smaller growth rates (Cowley & Hall 1990; Brown 
& Smith 1990). These linear features agree quite well with Mack's results a t  large M ,  
and suggest the two most likely structures of nonlinear vortex/compressible- 
Rayleigh interaction a t  large M,, as follows. 

(i) The linearized version, where 

First, the high-vorticity form of nonlinear interaction occurs where 

g = W , F ( z )  + (2T)-'g (with r e x p  (a) = W,) ( 5 . 1 ~ )  
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and the scalings operating are of the form 

a =  l-al/Wm, F = M " , F , ~ + ~ I T ,  i ~ = M , W / ( 2 r ) i ,  (5.lb) 
~ = M , ( 2 T ) - g i ,  (5.1 c )  

p -  1,  T -  1, p -  1. (5.ld) 
These scalings are implied by the Prandtl shift in g,  in (5.la),  which introduces in 
effect a large Gortler number WmFzZ (for the high-vorticity-layer flow) that is 
negative for flat-surface flow where F cc +xi. Thus the vortex becomes relatively 
'wide '. It is also quasi-two-dimensional in the cross-flow plane, since its governing 
equations become ( p q g  + (PIT), = 0, ( 5 . 2 ~ )  

PFzz = -;g (5.2 b )  
p(VW,+WWg) = -G,+(pWg)g, ( 5 . 2 ~ )  

(5.2d) 
jiT = 1,  ,ii = C T ,  (5% f) 

(5.29) 

p( v Tg + IT T,) = c -yp  T&, - 

p( va,g + ma,,) = (pal&, 
from (4 .2)  with (5.1). The coupled wave-amplitude equation, however, is now 

$gg - 2(Mg/M) f i g  - 22$ = 0 ,  ( 5 . 3 ~ )  

where M = (cl - a,)$, (5 .3b )  
upon suitable scaling in (4.3) ; and the back reaction of the wave on the vortex motion 
is felt through the slip condition 

1 1  

1 

at the unknown critical-level curve, from (4.4). Hence, despite the quasi-planar 
balances in (5 .2a-f) ,  the streamwise momentum balance (5 .29)  in the vortex still 
exerts influence on the nonlinear interaction owing to the appearance of a, in (5.3 b)  
and (5.4). We observe that an alternative type of nonlinear interaction can arise 
either with sufficient surface curvature present, if the resulting Gortler number is 
equal to M", F,, + 0(r1), or with negligible curvature F,,, since then the vortex can 
remain 'square', more like those in $4 and below. Again, for small wave amplitudes 
linearized properties hold, with (5 .2) ,  (5 .4)  reproducing the basic boundary-layer 
solution via the Howarth-Dorodnitsyn transformation, while (5.3) then gives the 
equation addressed by Brown & Smith (1990) for which the neutral wavenumber is 
OZ = a. Comments similar to those in (i), (ii) above apply thereafter. There is also a 
neat, exact, local solution to the full system (5.2)-(5.4), described in Walton (1991), 
and a possible link with the experimental studies of Holden (1985), where pronounced 
rope-like vortex motions were observed at the edges of hypersonic boundary layers 
in the Mach-number range 11-13. 

The second of the large-M, interaction structures is rather simpler, its scales being 
implied by the 0(Mm) thick boundary-layer form. Thus here 

(832, T ,  g, a, PZ) - p m ,  ( 5 . 2 ~ )  
a = O ( 1 ) ,  (p ,a) -M;' ,  f i -M4, ,  (5.5b) 

leaving the complete nonlinear interaction system (4.2)-(4.4) essentially intact. The 
only new feature here is that the boundary-layer's normal extent becomes finite, 
0 < g < F say, in normalized terms. The linearized version then matches up with the 
linear acoustic-modes analyses of Hall & Cowley and Brown & Smith, after which 
comments as in (i), (ii) again apply. It may be significant however that there are 
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infinitely many acoustic modes, and hence possible bifurcations, available usually as 
the flow proceeds downstream, in contrast with the single vorticity mode; and the 
modes present with large wavenumbers, as well as mode-crossing (Brown & Smith), 
may shed extra light on the nonlinear interaction process. 

(v) Extreme surface conditions, values of the parameters present such as r ~ ,  C, or 
pressure gradients, could also provide extra insight. 

(vi) Besides the many applications within boundary-layer transition summarized 
above, and the corresponding computational tasks, and nonlinear similarity forms 
for instance, there are also many other flow configurations to which vortex/Rayleigh- 
wave interaction applies in principal (see $6 and Appendix C). 

(vii) Finally here, we should mention the possibility that the Smith & Walton 
(1989) breakdown summarized in (3.2) also describes the ultimate behaviour of the 
present vortex/compressible-Rayleigh nonlinear systems, a t  least for wide vortices. 
If so, the boundary layer again separates, effectively, splitting into two increasingly 
far-apart layers, with only slow motion in-between, a t  a finite distance downstream. 
That opens up an intriguing prospect, namely that a vortex/wave interaction (either 
as in $2 or as in $4) can induce separation (as above), which then introduces an extra 
(inflexional) inviscid mode and then an extra vortex/wave nonlinear interaction, 
which leads to another separation, hence another interaction, and so on. This self- 
generating process causes the whole flow structure locally to cascade into smaller 
lengthscales, and thence into substructures. 

6. Further comments 
The present work extends our previous studies of vortex/wave interaction (Hall & 

Smith 1988, 1989, 1990) to  the strongly nonlinear regime in which the entire mean- 
flow profile, at any station x, is altered substantially from its undisturbed laminar 
form. This is for the compressible boundary-layer setting in the nonlinear 
vortex/Rayleigh interaction of $4 (the incompressible version is noted in Appendix 
C) and for the incompressible case in the nonlinear vortex/TS interaction of $2, with 
the corresponding compressible vortex/TS interaction following readily from a 
combination of those two sections (see also Smith & Walton 1989) and below. The 
solution properties and suggestions given in $53 and 5 hint fairly strongly, we believe, 
at the potential power of these nonlinear interactions in terms of full transition of the 
flow. In  addition, it appears that numerous waves can be triggered (see 95), all 
interacting nonlinearly with the unknown mean flow, especially if separation is 
approached for instance. These and other features of the nonlinear interactions found 
seem to offer exciting prospects for more complete theoretical understanding of fully 
fledged boundary-layer transition. 

Some numerical work for fully nonlinear interaction is described in $3, for the 
vortex/TS case, but further concerted efforts on full computations, for both the 
vortex/TS and the vortex/Rayleigh cases, are undoubtedly necessary and these 
represent a major challenge. They should enable quantitative comparisons with 
experiments and direct numerical simulations to be made eventually (an encouraging 
point being that qualitatively the flow structures in $$2 and 4 seem to be in line with 
the numerical-simulation experience, e.g. of Kleiser, that many more spanwise than 
streamwise wavenumbers are required to accurately describe fully fledged transition, 
except in its later stages.) The pure spatial problem, the pure temporal problem, and 
the combined problem featuring the operator a,+Ea, are all of interest here since 
they might provoke different ultimate behaviour and hence possibly different views 



Nonlinear vortexlwave interactions in boundary-layer transition 66 1 

of such phenomena as lambda-vortex formations (suggested by Smith ik Walton 
1989) and the successive collapses in scales referred to in $93 and 5.  The latter in turn 
may lead on to the three-dimensional Euler stage locally, cf. Smith (1988), Hoyle 
et al. (1991), Peridier, Smith & Walker (1991a,b) for nonlinear TS transition, 
allowing comparisons with experiments and direct numerical simulations (e.g. those 
of Zang, Erlebacher, Hussaini, Kleiser and Biringen) on the later stages of transition, 
including spikes, intermittency and streak production. In  all this, however, the 
computational tasks set by the nonlinear interaction problems posed in $2 and in 
(4.2)-(4.4) for instance seem to present a main hurdle. 

Certain other interesting aspects of the vortexlwave interactions should also be 
put on record here. These are: various limiting or simplified cases, such as those in 
$ 5 ;  similarity solutions (cf. $3;  Walton 1991) ; the analogy with Gortler-vortex 
development (based on Hall 1982, 1983 and subsequent works) ; non-equilibrium 
critical-layer effects (in the context of $4) ; high-frequency properties (for $12 and 4) ; 
and the implications for by-pass transition where the nonlinear interactions do not 
start from linear small-disturbance growth. 

The nonlinear vortexlwave interactions also have numerous potential applications 
for other types of flows, in all of which the essential ideas of $2 and/or $4 would seem 
to  apply: in wakes, channel flows (Bennett et al. 1991), pipe flows (Walton 1991), 
plane Couette flow, water motions, free shear layers, separations, vortex breakdown, 
where a swirl-velocity component is added to  the vortex motion (and separation such 
as in (3.2) could correspond to abrupt vortex thickening), and flows over surface 
roughnesses, for example. See also Appendix C. The ideas apply further to 
lengthscales other than those taken in $52 and 4. Again, there may be extensions of 
interest along the following lines : upper-branch flow structures, connected with the 
high-frequency TS limit ; non-Chapman fluids and real-gas effects ; surface-cooling 
effects (Seddougui, Smith & Bowles 1991 ; external-shock interactions in hypersonic 
flow, where the acoustic modes ( $ 5 )  could play an important part; external pressure- 
gradient influences ; and alternative compressible interactions. Nevertheless, the 
major pressing challenge seems to us to be the computational one of accurately 
solving the vortex/wave nonlinear interaction equations set up in $32 and 4, given 
the encouraging guidelines on the strongly nonlinear effects possible. 

Interesting and helpful comments were made by three referees, and by Miss P. G. 
Brown, Mr D. A. Davis and Dr J. W. Elliott who also kindly pointed out a number 
of corrections. An earlier version of this work appeared as our 1989 ICASE Report 
No. 89-82. The authors wish to acknowledge ICASE, SERC and AFOSR (grant no. 
89-0475) who supported parts of this work. 

Appendix A. More details behind the vortex/Tollmien-Schchting 
interaction equations 

For the wide-vortex/TS interaction of (2.2)-(2.4) the triple-deck structure holds, 
as with most TS linear or nonlinear interactions. Near the surface, in the lower deck 
containing the viscous critical layer, the total velocity and pressure are given by 

u = R e - ~ ~ Y + R e - f p ( z i , E + c . c . ) +  ...+ Re-iLk2tl,+ ... 
v = Re-; p ( 4 ,  E + c.c. + . . . + Re-i Lk26+ . . . , 

w = RedLk(G,E+c.c . )+  . . . + R e - i p 2 a , + . . . ,  
p = Re-1 p ( P E  + cx.)  + . . . , 

(A 1) 
(A 2) 
(A 3) 
(A 4) 
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in effect. Here the mean-flow skin-friction factor h(x,Z) is defined in (2.3b), y = 
Re-EY, and PE+c.c. is equal to  P, in (2.ld).  Substitution into the Navier-Stokes 
equations leads, first, to the unsteady linearized three-dimensional boundary-layer 
equations for the wave part, as a small perturbation of the unknown shear flow u = 
Re-AXY, so that 

iaZi, + B,, + G,, = 0, 

( - iQ +iccXY) Zi, +B, X+G, X, = - iaP+ Zi,,,, 

( - isZ + iaXY) G, = - P, + G l Y y ,  

(A 5 )  

(A 6) 

(A 7 )  

from the balances of continuity, x-momentum and z-momentum in turn. The y- 
momentum balance confirms that P is independent of Y. The solution of the 
governing equations (A 5)-(A 7)  together with the appropriate boundary conditions 
(no slip a t  Y = 0, and Zi, + A ,  G, + O  as Y+ co) then yields the TS pressure equation 
(2.3a), after some working as in Smith (1979b), involving the effective negative 
displacement A of the wave and the Airy-related functions shown in ( 2 . 5 ~ 4 ) .  

At second order, the amplitude-squared forcing from the wave parts produces a 
mean- or vortex-flow contribution rx EO, among others, since a, 52 are real. The 
controlling equations here, again from substitution of (A 1)-(A 4) into the 
Navier-Stokes equations, have a form analogous to those in (B lo), (B 12) in 
Appendix B, for the vortex part a,,, mV, with the notation suitable changed (and f = 0 
now). The forcing terms ( ) in the z-momentum vortex balance decay as Y-2 at 
large Y, however, since 6, and Zi, - A  decay algebraically cc Y-l, from the solution of 
(A 5)-(A 7) ,  as Y + 00. Hence the viscous term a2mv/ay2 in the z-momentum vortex 
balance leads to the logarithmic growth 

(A 8) mv - - Xi2 a,[ IpI2 + a-2 1 ~ ~ 1 2 1  In Y as Y -+ co 

of the spanwise velocity of the vortex motion. The behaviour (A 8) therefore implies 
the inner constraint (2.2d) on m, or the spanwise slip velocity, as observed in the main 
deck where Y+Re%g effectively, as well as the scaling factor L? in (2.lb). 

I n  the main deck, the majority of the boundary layer, the flow solution expands 
in the (displaced-flow) form 

u = t i ( z , g , Z ) + R e - ~ L ? ( A E t ~ ~ + c . c . ) +  ... (A 9) 

effectively, and so on, as inferred from the expansions (2 . la ,  c) added together, and 
matching with (A 1)-(A 4). Here the Navier-Stokes equations are satisfied to the 
required order provided that the vortex equations (2.2 a-c) hold. 

The expansion in the upper deck just outside the boundary layer then takes the 
form 

u = u,(x)+Re-~L?(u,E+c.c.)+ ..., 
p = Re-gL?(#E + c.c.) + . . . , 

(A 10) 

(A 11) 

and so on, such that in (2.1 b) 9, = $E+c.c. There is therefore a small perturbation 
of the free stream in effect, giving potential-flow equations, for example, with 
iau, + av,/aij + i3wJa.Z = 0 for continuity, where y = Re-$ in the upper-deck 
scaling. These potential-flow equations along with the required matching conditions 
give the wave response summarized in (2.4a+). The feedback pressure effect on the 
main vortex part, from the upper-deck motion, remains negligible at the present 
order. 

Virtually all the above features come directly from $6  of Smith & Walton (1989), 
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when h there is replaced by Red. For our $4, a similar exercise of substitution (of the 
expansions (4.1)) into the Navier-Stokes equations leads to the governing equations 
(4.2)-( 4.4). 

Appendix B. The critical-layer behaviour (for vortex/Rayleigh-wave 
interactions) 

properties produced are predominantly linear. The solution takes the form 
The critical layer occurs when y = Re-if(z, a + Re-: Y ,  with Y of O( l) ,  and the flow 

u = c+Re-:A,(x, 3 Y + . . . +Re-; Y1 U(') + . . . +Re-i(9; 8+ 9, U@)) + . . ., (B 1 )  

v = . . . + ~ e - t 9 ,  v ( ~ ) + R ~ - ~ ( L Y ~ ~ , W + Y ~  P ) + f , W , ) +  ... 
+ Re-f(9; U+f, wN + YM) + . . . , (B 2) 

w = . . . +Ref 9l W(') + . . . + R e t ( 9 ;  w+ 9, WCz) + W,) + . . . +Re-; WN + . . . , 
(B 3) 

(B 4) p = ...+ R e - ~ ~ , P " ) + . . . + R e f ~ , P ( ' ) +  ..., 
where A, is the streamwise vortex shear at the critical layer, the main wave part 
(superscript ( 1 ) )  depends on the fast scales (X, 0 = Ret(x, t )  with wavespeed c as in $4, 
and the main vortex part (overbarred) is independent of the fast scales. Here we 
discuss the incompressible case with zero pressure gradient, for the sake of clarity; 
the compressible version follows along similar lines. 

The successive balances in mass conservation resulting from (B 1)-(B 4) give 

vy = f, Wc:) , 
Uy + Vl"' + W p  -fz Wl"' = 0, 

c, - f, A, + YMY + w,, = 0, 

(B 5 )  

(B 6) 

(B 7) 

= f i  W'", (B 8) 

(B 9) 

(B 10) 

(B 11) 

(B 12) 

and the 2-momentum balances of concern are 

A, YUg' + A, V") + W"'A,, Y - W(''fiA, = -P(l)  X + AU" YYj  

( U1)Ug) + V(')UF) + W(')UL1) - W'2'f, U g ) )  + YA, + WYA,,+ . . . = . . . + A O Y y .  

Likewise, the z-momentum balances here become 

A, YWg' = -Pp)  +fzPg' + AW") Y Y ,  

( U(1) Wg) + V(') W(1) Y + W") WP) - W('y- Z Y  W(1)). . . = . . . + A myy,  

pc,Z) = -Al  YVg) + AV(1) Y Y '  

while the y-momentum equation implies that P(l) is independent of Y ,  and hence 
equal to p ( l ) ,  and 

In (B lo), (B 12), ( ) refers to the vortex components only, in the enclosed terms. 
The wave part in this non-flat critical layer may be analysed by putting V(')- 

f, W(') = V,, say, which leaves U('), V,, W(l) satisfying essentially the equations of a 
linear three-dimensional disturbance in a standard flat critical layer, from (B 6), 
(B 9), (B l l ) ,  (B 13) and since P1) =f,W(l) from (B 5 ) ,  (B 8). In particular, W(l)  
satisfies a forced Airy equation in the form 

(B 13) 

A, YWg) = -p$l),&' + AW(1) Y Y ,  (B 14) 
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W(l) = - (A2h , iu ) - f@Z9(p)E+c .c . ,  Y = (A/Alia)ip, (B 15) 

where Y satisfies 9"- YY = 1, Y( f 00) = 0, and can be expressed in terms of the 
Airy function, and E = exp ( i d -  isZt",. This and the corresponding solutions for V,, 
U(') are smooth for all Y and satisfy the asymptotic conditions of matching, 

[U"), V'), W'"] N Y-'[F-,, G-,, H_,]E+c.c.: 

[ V ( 2 ) , W ( 2 ) ] + [ G o , H o ] E + c . c .  as Y++oo, (B 16) 

implied by (4.7), (4.8) (with Appendix C), as required. 
Then the main vortex equation of interest here is that for W, in (B 12). Here the 

behaviour in (B 16) shows that the nonlinear forcing term on the left-hand side of 
(B 12) decays as Y-2 as Y + co. So, with allowance made for the normal pressure 
variation due to the Y-momentum balance, double integration of (B 12) with respect 
to Y produces the response 

B = d-l [2(H-1H~1)Z+(f,H0-G0)H_*1+(fZH~-G~) H-,+2fZ,f~IH-,1'k'] 

being found to  equal -Q& as defined in (4.4b) or in Appendix C. The logarithmic 
behaviour in (B 17) and the associated logarithmic terms in 0, V a t  large IyI are 
responsible for the scale factor 9, in (4.1), as well as for the effective slip condition 
in (4.4b). The condition (4.4b) follows from the match with the flow solution in $4, 
since In IyI +QlnRe+ln Ig-fl in effect. 

Appendix C. Vortex/Rayleigh-wave interactions in the incompressible case 
Many of the extra applications mentioned in the text are concerned more with 

incompressible fluids, for which the vortex/wave interaction equations (4.2)-(4.4) 
continue to  hold provided p,,ii are replaced by unity in (4 .2ad) ,  M is replaced by 
(a-c) in (4.3a), with the @ term omitted, and (4.4b) is replaced by 

Q = - [@( ul)"a"l - { 1 5  (C 1) 

where the curly brackets signify the curly-brackcted expression in (4.4 b ) .  The 
governing equations in that case are ( 4 . 2 ~ 4 ,  h, i), (4.3a-c), ( 4 . 4 b 4 ,  with the above 
modifications. I n  addition, the local pressure expansion ( 4 . 5 ~ )  remains valid 
provided that in ( 4 . 6 ~ ~ )  Ml,M2 are replaced by ti,, a2 respectively. Similarly, the 
local velocity expansions (4.7 a x )  remain true provided that 

G-, = -@,/ictu,, H - ,  = (fzj3,-@oz)/iu~,, F-, = -H- ,J iu  
(C 21, (C 3), (C 4) 

(C 5) 

instead of (4.8a-c) in turn; also 

Go = - ti2 G-,/al - 2@2/iua,, 

H, = -ti2H-1/ti1+ (2fZj32-@lZ)/iual 
in this case. 

Note added in proof. Professor S. N. Brown and Ms P. G. Brown have kindly pointed 
out that terms proportional to Yare missing in (B 17) in Appendix B, due to the 
double integration of (B 12). In consequence, YR1 in (4.1) should be replaced by R e d  
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(with corresponding reductions in the wave amplitudes and vortex-flow variation for 
the critical layer in Appendix B), leaving the structure and equations of $4 intact 
except that (4.4b) should be replaced by 

(a = had-'), which imposes a jump condition on the vortex shear across the critical 
layer. The above jump applies for the incompressible regime, with a corresponding 
generalization to the compressible case. Also, relatively minor alterations follow in 
$5 and in (C 1) in Appendix C. 
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